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To design new waveguide shapes and to assess their performance in larger
systems, propagation constants and field patterns must be found. The following
examples are typical of studies requiring knowledge of higher-order modes:

a) bandwidth considerations - the upper limit is set by the inception

of higher-order modes;

b) waveguide discontinuity analysis - a set of modes is required to

solve scattering problemsl; and

¢) multimode launching and propagation studies - applications include

prediction of undesirable linear accelerator resonances, multimode
techniques in aerial improvementé, etc.

One of the most promising techniques appears to be the finite-difference
method. 1In a very enlightening paper, Davies and Muilwyk3 illustrated the
power and usefulness of the method. The cross-section of an arbitrary wave~

gulde was divided into a mesh of squares each having sides of length h. The
transverse form of the Helmholtz equation
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where V_ is the transverse Laplacian and k_is the cutoff propagation constant,
t . - : c

was written in the finite-difference ~ form

Gyt byt eyt 0, - be + G ) Pe, = 0. 2

¢o is a typical node potential of the mesh and ¢, to ¢, are adjacent

node potentials. Instead of defining the potéential ¢(x,y) at all points
(x,y), the potential ¢, is defined only at discrete points i. Equation (2)
was evaluated at every node point with appropriate modification to include
boundary conditions. These are that ¢i = 0 for TM modes and that the normal

derivative
2¢ =
[’an ; o
i
for TE modes. The resulting set of equations was written in matrix form

(A -2AD)¢ = 0 (3)
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where the square matrix of coefficients is denoted by A and ¢ is the eigen-
vector consisting of all node potentials ¢,., Equation (3) is the standard
form of a matrix eigenvalue problem where the eigenvalue

_ 2
r o= (kch) (4)

Equation (3) can be solved, for dominant and higher-order modes, by direct
methods which require sufficient immediate-access computer store for all
elements in matrix A. The order of this matrix is equal to the number of
nodes. This then restricts the number of node points to about 100 with a
consequent upper limit to the maximum attainable accuracy.

On the other hand, because the matrix is very sparse, there is no sense
in storing amything but the non-zero elements. An even more economical
method is to generate the matrix row-by-row as required, thus saving nearly
all store for the vector ¢. This increases vastly the number of nodal points
feasible, Iterative methods of solution must then be used. Davies and
Muilwyk used up to 20,000 equations in solving a variety of waveguide shapes
from the rectangular to a complicated club-shaped guide. They reported
cutoff propagation constants with estimated accuracies of better than 0.1
percent. Startin§ with a first estimate to the eigenvalue A(l), the
corresgonding ®(1( was found by the "Successive Point Overrelaxation" iterative

method Using & 1), an improved eigenvalue A 2) was calculated from the
Rayleigh quotient
T
) 28 a®
A = ()
RN

k is the number of the successive eigenvalue estimate. The transpose is
indicated by T. The advantage of Equation (5) is that it is statiomary at
the solution point and so approximate potential values ¢, yield a more
accurate eigenvalue estimate. Using the new eigenvalue,” a second and better
estimate of the field potential is found, and so on until sufficient accuracy
is obtained.

The disadvantage of this iteration technique is that it fails to converge
for higher-order eigenvalues. Therefore, it is applicable to the dominant
mode only and rarely, in cases of guide symmetry, to the second mode. There
are two methods, described by Fadeevad, for the solution of higher-order modes.
Unfortunately, evaluation of each successive mode involves all previously
determined lower-—order modes. Inaccuracies accumulate and computations soon
become useless.

Even if convergence were always guaranteed, degradation of accuracy with
mode order must be expected due to the increased number of oscillations over
the cross-section relative to a given mesh size. This increased discretization
error occurs because the mesh appears coarser for higher-order modes.

It happens that for rectangular sections an exact analytic solution to
the finite-difference eigenvalue problem exists® and so the magnitude of
this source of error can be demonstrated in this particular case. Consider
TM modes in a rectangular guide with sides 7 and (11/7)7. An exact fit with
mesh size h = 7/7 yields 60 nodal equations. Solving the finite-difference
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equations exactly, and knowing the solution to the continuous problem,
discretization error in propagation constants of the first five modes are
0.8, 1.2, 2.6, 3.0, and 2.8 percent respectively. Halving the mesh size, thus
yielding 273 equations, places the direct method beyond the capability of
present-day computers. With this number of equations, the above errors are
reduced to 0.1, 0.3, 0.7, 1.0, and 0.7 percent. C(learly, these errors can be
offset by supplying more boundary and field information at smaller discrete
intervals. In complicated guides, we must expect much less accuracy due
mainly to imperfect fitting of the mesh to the boundary shape and to field
singularities at internal corners’/. The problem is that, for higher-order
modes in particular, large numbers of equations are required. The only
realistic method of solution is by iteration, and that usually fails to
converge.

Iteration fails to converge for higher-order modes because the matrix
(A - AI) is not positive definite for A > A3, (A1 is the matrix eigenvalue
corresponding to the first mode.) To allow iteration to succeed, the problem
was reformulated as follows. The solution of the matrix eigenvalue equation

(A -2 (A-2AD)o = 0 (6)

is satisfied by the same eigenvectors and eigenvalues as Equation (3).
Eigenvalues of the new matrix C = (A - AI)2 are equal to the square of those

of matrix B = (A - AIL). C is therefore positive definite for all approximations
to A except at solution pointe X4, where it is positive semidefinite. The
iteration method used here is therefore guaranteed to converge for symmetric
matrices. For slightly nonsymmetric matrices, which occur in TE problems,
experimental verification of convergence has been obtained for the squared
system.

In order to solve Equation (6) by successive overrelaxation, one must
know matrix C. Certainly, direct squaring is impossible as the computer
cannot keep n? = (20,000)i elements in its immediate-access store. If it
could, a direct method of solution might be used in preference to iteration.
Also, it appears to be a difficult task to square a large matrix and keep
track of all new element locations and values so that only non-zero elements
need to be stored. This will also waste computer store. As with the non-
squared system, the most efficient method is to do row-by-row matrix generation,
thus reserving nearly all store for ¢. It turns out that this is possible
for the finite~difference form of the Helmholtz equation and an algorithm
was developed to do this while paying due regard to boundary conditions. The
squared system yields linear equations of the form

“2e(o ook + 20080 R+ (0gHe) o Hh )+ (elH)G = O
(€)]
where e = 4~ A (8)

The ¢ values are node potentials in the vicinity of the central potential ¢o.
Equation (7) is modified slightly near boundaries.

Solution was obtained primarily as previously described. To speed
convergence for a fine mesh, a number of eigenvalues and eigenvectors were
found using a coarse one. These easily obtained solutions were then used to
initiate iteration with a finer mesh. The approximate eigenvalues were used
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as starting points and the values of the potential function at newly defined
nodes were approximated by Taylor series interpolation between nodes of the
coarse mesh.

An L-shaped region was chosen as an example of an arbitrary shape.
Propagation constants for different mesh sizes for the TM case are given in
the table. Field plots of constant E_ contours, for the first four modes,
are illustrated in the figure. 2

kc for TM Modes in an L-Shaped Guide (h = n/7)

Mode h h/2 h/4 h/8 h/16
1 1.424487 1.428048 1.427770

2 1.754002 1.773439 1.778203 1.779571

3 2.184215 2.229285 2.240601 2.243657 2.245344
4 2.383168 2.427498 2.437205 2.439827 2.440858
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