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To design new waveguide shapes and to assess their performance in larger

sYs terns, propagation constants and field patterns must be found. The following

examples are typical of studies requiring knowledge of higher-order modes:

a)

b)

c)

bandwidth considerations - the upper limit is eet by the inception

of higher-order modes;

waveguide discontinuity analysis - a set of modes is required to

solve scattering problemsl; and
multimods launching and propagation studies - applications include

predict ion of uncles irable linear accelerator resonances, multimode

techniques in asrial improvement, etc.

One of the most promising techniques appears to be the finite-difference

method. In a very enlightening paper, Davies and Muil.wyk3 illustrated the

power and usefulness of the method. The cross-section of an arbitrary wave-

guide was divided into a mesh of squares each having sides of length h. The

transverse form of the Helmholtz equation

where V’? is the transverse Laplacian and k
L

was written in the finite-difference c

(1)

is the cutoff propagation constant,

form

$1+ ’$2+ ’+3+$L - 4$0 + (kch) 24 =0.
0

(2)

$0 is a

node
tYPical node potential of the mesh and 4 ~ t: f4 are ad j scent

potentials. Instead of defining the potent~a.1 $(x, y) at all points

(x,y) , the potential $. is defined only at discrete points i, Equation (2)

was evaluated at every ’node point with appropriate mofiification to include

boundary conditions. These are that $i = O for TM modes and that the normal

derivative

H*hi=o

for TE modes. The resulting set of equations was written in matrix form

(A - AI)@ = O (3)
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where the square matrix of coefficients is denoted by A and O

vector consisting of all node potentials $i. Equation (3) is

form of a matrix eigenvalue problem where the eigenvalue

1 = (kch)z

is tbe eigen-

the standard

(4)

Equation (3) can be solved, for dominant and higher-order modes, by direct

methods which require sufficient immediate-access computer store for all

elements in matrix A. The order of this matrix is equal to the number of

nodes. This then restricts the number of node points to about 100 with a

consequent upper limit to the maximum attainable accuracy.

On the other hand, because the matrix is very sparse, there is no sense

in storing anything but the non-zero elements. An even more economical

method is to generate the matrix row-by–row as required, thus saving nearly

all store for the vector O. This increases vastly the number of nodal points

f easib le. Iterative methods of solution must then be used. Davies and

Muilwyk used up to 20,000 equations in solving a variety of waveguide shapes

from the rectangular to a complicated club-shaped guide. They reported

cutoff propagation constants with estimated accuracies of better than O. 1

percent. Startin with a first estimate to the eigenvalue L (1) , the
?corres onding O (1 was found by the

t
“Successive Point Overrelaxation” iterative

method . Using o (1) , an improved eigenvalue A(2) was calculated from the

Rayleigh quotient

~(k+l) = @‘k) T A’3 ‘k)

* (k) T ~ (k)

(5)

k is the number of the successive eigenvalue estimate. The transpose is

indicated by T. The advantage of Equation (5) is that it is stationary at

the solution point and so approximate potential values 4i yield a more

accurate eigenvalue estimate. Using the new eigenvalue, a second and better
estimate of the field potential is found, and so on until sufficient accuracy

is obtained.

The disadvantage of this iteration technique is that ic fails to converge

for higher-order eigenvalues. Therefore, it is applicable to the dominant

mode only and rarely, in cases of guide symmetry, to the second mode. There

are two methods, described by Fadeeva5, for the solution of higher-order modes.

Unfortunately, evaluation of each successive mode involves all previously

determined lower-order modes. Inaccuracies accumulate and computations soon

become useless.

Even if convergence were always guaranteed, degradation of accuracy with

mode order must be expected due to the increased number of oscillations over

the cross-section relative to a given mesh size. This increased discretization

error occurs because the mesh appears coarser for higher-order modes.

It happens that for rectangular sections an exact analytic solution to

the finite-difference eigenvalue problem exists6 and so the magnitude of

this source of error can be demonstrated in this particular case. Consider
TM modes in a rectangular guide with sides m and (11/7) m. An exact fit with

mesh size h = m/7 yields 60 nodal equations. Solving the finite-difference
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equations exact ly, and knowing the solution to the cent inuous problem,

discretizat ion error in propagation constants of the first five modes are

0.8, 1.2, 2.6, 3.0, and 2.8 percent respectively. Halving the mesh size, thus

yielding 273 equations, places the direct method beyond the capability of

present-day computers. With this number of equations, the above errors are

reduced to 0.1, 0.3, 0.7, 1.0, and 0.7 percent, Clearly, these errors can be
offset by supplying more boundary and field information at smaller discrete

intervals. In complicated guides, we must expect much less accuracy due
mainly to imperfect fitting of the mesh to the boundary shape and to field

singularities at internal c0rners7. The problem is that, for higher-order

modes in particular, large numbers of equations are required. The only

realistic method of solution is by iteration, and that usually fails to

converge.

Iteration fails to converge for higher-order modes because the matrix

(A - AI) is not positive definite for A > Al. (Al is the matrix eigenvalue

corresponding to the first mode. ) TO allow iteration to succeed, the problem

was reformulated as follows. The solution of the matrix eigenvalue equation

(A - XI) (A - ).1)0 = O (6)

is satisfied by the same eigenvectors and eigenvalues as Equation (3) .

Eigenvalues of the new matrix C = (A - AI) 2 are equal to the square of those

of matrix B = (A - AI) . C is therefore positive definite for all approximations

to i except at solution points 1 i, where it is positive semidef inite. The

iteration method used here is therefore guaranteed to converge for symmetric

matricee. For slightly nonsymmetric matrices, which occur in TE problems,

experimental verification of convergence has been obtained for the squared

system.

In order to solve Equation (6) by successive overrelaxation, one must

know matrix C. Certainly direct squaring is impossible as the computer

cannot keep nz = (20 ,000) ~ elements in its immediate-access store. If it

could, a direct method of solution might be used in preference to iteration.

Also, it appears to be a difficult task to square a large matrix and keep

track of all new element locations and values so that only non–zero elements

need to be stored. This will also waste computer store. As with the non-

squared system, the most efficient method is to do row-by-row matrix generation,

thus reserving nearly all store for @. It turns out that this is possible

for the finite-difference form of the Helmholtz equation and an algorithm

was developed to do this while paying due regard to boundary conditions. ‘The

squared system yields linear equations of the form

-’2e($1+$2+@3+@4) + .2(’45+06+07+08) + ($9+010+$11+$12) + (e2+4)$0 = O

(7)

where ~=4-~, (8)

The @ values are node potentials in the vicinity ot the central potential $..

Equation (7) is modified slightly near boundaries.

Solution was obtained primarily as previously described. To speed

convergence for a fine mesh, a number of eigenvalues and eigenvectors were

found using a coarse one. These easily obtained solutions were then used to

initiate iteration with a finer mesh. The approximate eigenvalues were used
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as starting points and the values of the potential function at newly defined

nodes were approximated by Taylor series interpolation between nodes of the

coarse mesh.

An L-shaped region was chosen as an example of an arbitrary shape.

Propagation constants for different mesh sizes for the TM case are given in

the table. Field plots of constant E= contours, for the first four modes,

are illustrated in the figure.

kc for TM Modes in an L-Shaped Guide (h = ./7)

Mode ~ h/2 h/4— h/8 h/16—

1 1.424487 1.428048 1.427770

2 1.754002 1.773439 1.778203

3

1.779571

2.184215 2.229285 2.240601 2.243657 2.245344

4 2.383168 2.427498 2.437205 2.439827 2.440858
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(b)

Cons’tent E= contours for the first four TM modes.
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